Pythonใฎๆฐๅค่จ็ฎใฉใคใใฉใชNumPyใงใใไฝฟใๆฉ่ฝ๏ผ้ขๆฐใปใกใฝใใใป็ฎ่กๆผ็ฎๅญใชใฉ๏ผใไธ่ฆงใซใใฆใพใจใใฆใฟใพใใใ
้ ๅใฎ็ๆ
NumPy้ ๅใฎ็ๆใซ้ขใใไธปใชๆฉ่ฝใฏๆฌกใฎ้ใใงใใ
| – | ่จ่ฟฐไพ | ๆฉ่ฝใฎ่ชฌๆ |
|---|---|---|
| 1ๆฌกๅ ้ ๅ | x = numpy.array([1, 2, 3]) | 1ๆฌกๅ ้ ๅxใ็ๆใใพใใ๏ผarrayๅ๏ผ |
| 2ๆฌกๅ ้ ๅ | X = numpy.array([[1,2,3],[4,5,6]]) | 2ๆฌกๅ ้ ๅXใ็ๆใใพใใ๏ผarrayๅ๏ผ |
| 1ๆฌกๅ ่กๅ | x = numpy.matrix([1, 2, 3]) | 1ๆฌกๅ ่กๅxใ็ๆใใพใใ๏ผmatrixๅ๏ผ |
| 2ๆฌกๅ ่กๅ | X = numpy.matrix([[1,2,3],[4,5,6]]) | 2ๆฌกๅ ่กๅXใ็ๆใใพใใ๏ผmatrixๅ๏ผ |
| ็ฉบ้ ๅ | X = numpy.empty([m, n]) | ใตใคใบใmรnใง็ฉบใฎ้ ๅXใ็ๆใใพใใ๏ผใกใขใช้ ๅใฎ็ขบไฟใฎใฟ่กใใ่ฆ็ด ใฎๅๆๅใฏใใชใใฎใง้ซ้ใซ้ ๅใ็ๆใใพใ๏ผ |
| ๅ จ่ฆ็ด ใ1โ | X = numpy.ones((m, n)) | ใตใคใบใmรnใงๅ จใฆใฎ่ฆ็ด ใ1ใฎ้ ๅXใ็ๆใใพใใ |
| ๅ จ่ฆ็ด ใ1โก | X = numpy.ones_like(B) | ้ ๅBใจๅใใตใคใบใงๅ จใฆใฎ่ฆ็ด ใ1ใฎ้ ๅXใ็ๆใใพใใ |
| ้ถ่กๅโ | X = numpy.zeros((m, n)) | ใตใคใบใmรnใงๅ จใฆใฎ่ฆ็ด ใ0ใฎ้ ๅXใ็ๆใใพใใ |
| ้ถ่กๅโก | Y = numpy.zeros_like(X) | ้ ๅXใจๅใใตใคใบใงๅ จใฆใฎ่ฆ็ด ใ0ใฎ้ ๅYใ็ๆใใพใใ |
| ๅ จ่ฆ็ด ใ1ใคใฎๅค | X = numpy.full([m, n], value) | ใตใคใบใmรnใงๅ จใฆใฎ่ฆ็ด ใvalueใฎ้ ๅAใ็ๆใใพใใ |
| ๅไฝ่กๅ | X = numpy.eye(m) | ใตใคใบใmรmใฎ้ ๅX๏ผๅไฝ่กๅ๏ผใ็ๆใใพใใ |
| ไธ่ง่กๅ | X = numpy.tri(m) | ใตใคใบใmรmใฎ้ ๅX๏ผไธ่ง่กๅ๏ผใ็ๆใใพใใ |
| ็นฐใ่ฟใโ | x = numpy.repeat([1, 2, 3], n) | [1, 2, 3]ใnๅ็นฐใ่ฟใใ้ ๅxใ็ๆใใพใใ |
| ็นฐใ่ฟใโก | x = numpy.tile([1, 2, 3], n) | [1, 2, 3]ใnๅ็นฐใ่ฟใใ้ ๅxใ็ๆใใพใใ |
| ็ฏๅฒใป้้ใๆๅฎ | x = numpy.arange(a0, an, d) | ๅบ้[a0, an)ใ้้dใฎใใผใฟใ่ฆ็ด ใซใใค้ ๅxใ็ๆใใพใใ |
| ็ฏๅฒใป่ฆ็ด ๆฐใๆๅฎ | x = numpy.linspace(a0, an, n) | ๅบ้[a0, an)ใ่ฆ็ด ๆฐnใฎ้ ๅxใ็ๆใใพใใ |
| ๅฏพๆฐในใฑใผใซ | x = numpy.logspace(a0, an , n, base=b) | ๅบ้[a0, an)ใ่ฆ็ด ๆฐnใงๅฏพๆฐในใฑใผใซ(ๅบใฏb)ใงไธฆในใใใ้ ๅxใ็ๆใใพใใ |
| ๆ ผๅญ็ถ้ ๅ | X = numpy.meshgrid(x, y) | ็ธฆๆจชใซ็ญ้้ใชๆ ผๅญ็ถ้ ๅXใ็ๆใใพใใ |
ไนฑๆฐ้ ๅใฎ็ๆ
ไนฑๆฐ้ ๅใฎ็ๆใซ้ขใใไธปใชๆฉ่ฝใฏๆฌกใฎ้ใใงใใ
| – | ่จ่ฟฐไพ | ๆฉ่ฝใฎ่ชฌๆ |
|---|---|---|
| ไธๆงไนฑๆฐ(ๆดๆฐ)โ | x = numpy.random.randint(a0, an, n) | ๅบ้[a0, an)ใงใตใณใใซๆฐnใฎไธๆงไนฑๆฐ้ ๅxใ็ๆใใพใใ๏ผๅคใฏๆดๆฐ๏ผ |
| ไธๆงไนฑๆฐ(ๆดๆฐ)โก | X = numpy.random.randint(a0, an, (m,n)) | ๅบ้[a0, an) ใใตใณใใซๆฐnใใตใคใบใmรnใฎไธๆงไนฑๆฐ้ ๅXใ็ๆใใพใใ |
| ไธๆงไนฑๆฐ๏ผๅฎๆฐ๏ผโ | x = numpy.random.rand(n) | ๅบ้[0.0, 1.0)ใใตใณใใซๆฐnใฎไธๆงไนฑๆฐ้ ๅxใ็ๆใใพใใ๏ผๅคใฏๅฎๆฐ๏ผ |
| ไธๆงไนฑๆฐ๏ผๅฎๆฐ๏ผโก | X = numpy.random.rand(n) | ๅบ้[0.0, 1.0)ใใตใณใใซๆฐnใใตใคใบใmรnใฎไธๆงไนฑๆฐ้ ๅxใ็ๆใใพใใ |
| ๆญฃ่ฆๅๅธ | x = numpy.random.normal(mu, sigma, n) | ๅนณๅๅคmuใๆจๆบๅๅทฎsigmaใใตใณใใซๆฐnใฎๆญฃ่ฆๅๅธใซๅพใไนฑๆฐ้ ๅxใ็ๆใใพใใ |
| ๆจๆบๆญฃ่ฆๅๅธ | x = nnmpy.random.randn(n) | ใตใณใใซๆฐnใฎๆญฃ่ฆๅๅธ(ๅนณๅๅค0ใๆจๆบๅๅทฎ1)ใซๅพใไนฑๆฐ้ ๅxใ็ๆใใพใใ |
| ไบ้ ๅๅธ | x = numpy.random.binomial(t, p, n) | ่ฉฆ่กๅๆฐtใ็ขบ็pใใตใณใใซๆฐnใฎไบ้ ๅๅธใซๅพใไนฑๆฐ้ ๅxใ็ๆใใพใใ |
| ใใขใฝใณๅๅธ | x = numpy.random.binomial(lam, n) | ่ฉฆ่กๅๆฐlamใใตใณใใซๆฐnใฎใใขใฝใณๅๅธใซๅพใไนฑๆฐ้ ๅxใ็ๆใใพใใ |
| ใใผใฟๅๅธ | x = numpy.random.beta(a,b,n) | ใใฉใกใผใฟa, bใใตใณใใซๆฐnใฎใใผใฟๅๅธใซๅพใไนฑๆฐ้ ๅxใ็ๆใใพใใ |
| ฯๅๅธ | x = numpy.random.chisquare(df, n) | ่ช็ฑๅบฆdfใใตใณใใซๆฐnใฎใซใคไบไนๅๅธใซๅพใไนฑๆฐ้ ๅxใ็ๆใใพใใ |
| ใฌใณใๅๅธ | x =numpy.random.gamma(p,sigma,10) | ็ขบ็pใๆจๆบๅๅทฎsigmaใใตใณใใซๆฐnใฎใฌใณใๅๅธใซๅพใไนฑๆฐ้ ๅxใ็ๆใใพใใ |
| Fๅๅธ | x = numpy.random.f(num, den, n) | ๅๅญใฎ่ช็ฑๅบฆnumใๅๆฏใฎ่ช็ฑๅบฆdenใใตใณใใซๆฐnใฎFๅๅธใซๅพใไนฑๆฐ้ ๅxใ็ๆใใพใใ |
็ฎ่กๆผ็ฎๅญ
้ ๅใฎ็ฎ่กๆผ็ฎๅญใซ้ขใใไธปใชๆฉ่ฝใฏๆฌกใฎ้ใใงใใ
| – | ่จ่ฟฐไพ | ๆฉ่ฝใฎ่ชฌๆ |
|---|---|---|
| ๅ ็ฎ | z = x + y | ้ ๅx, yใฎ่ฆ็ด ๅๅฃซใๅ ็ฎใใพใใ |
| ๆธ็ฎ | z = x – y | ้ ๅx, yใฎ่ฆ็ด ๅๅฃซใๆธ็ฎใใพใใ |
| ไน็ฎ | z = x * y | ้ ๅx, yใฎ่ฆ็ด ๅๅฃซใไน็ฎใใพใใ๏ผmatrixๅใฎ่กๅใฎๅ ดๅใฏๅ ็ฉใๆฑใใพใ๏ผ |
| ้ค็ฎ | z = x / y | ้ ๅx, yใฎ่ฆ็ด ๅๅฃซใ้ค็ฎใใพใใ |
| ๅฐไฝ | z = x % y | ้ ๅx, yใฎ่ฆ็ด ๅๅฃซใ้ค็ฎใใๆใฎๅฐไฝใๆฑใใพใใ |
| ๅชไน | y = x ** a | ้ ๅxใฎ่ฆ็ด ใaไนใใพใใ |
| ็ฌฆๅทๅ่ปข | y = -x | ้ ๅxใฎ่ฆ็ด ใฎ็ฌฆๅทใๅ่ปขใใพใใ |
้ ๅๆไฝ
ใ้ ๅใฎๆไฝใใซ้ขใใไธปใชๆฉ่ฝใฏๆฌกใฎ้ใใงใใ
| – | ่จ่ฟฐไพ | ๆฉ่ฝใฎ่ชฌๆ |
|---|---|---|
| ๅ ้ ญใฎ่ฆ็ด ใธไปฃๅ ฅ | x[0] = value | 1ๆฌกๅ ้ ๅxใซใใใๅ ้ ญใฎ่ฆ็ด ใซๅคใไปฃๅ ฅใใพใใ |
| i็ช็ฎใฎ่ฆ็ด ใธไปฃๅ ฅ | x[i] = value | 1ๆฌกๅ ้ ๅxใซใใใi็ช็ฎใฎ่ฆ็ด ใซๅคใไปฃๅ ฅใใพใใ(ๅ ้ ญใฏ0็ช็ฎ) |
| ๆซๅฐพใฎ่ฆ็ด ใธไปฃๅ ฅ | x[-1] = value | 1ๆฌกๅ ้ ๅxใซใใใๆซๅฐพใฎ่ฆ็ด ใซๅคใไปฃๅ ฅใใพใใ |
| i๏ฝj-1็ช็ฎใฎ่ฆ็ด ใธไปฃๅ ฅ | x[i:j] = value | 1ๆฌกๅ ้ ๅxใซใใใi็ช็ฎใใj-1็ช็ฎใพใงใฎ่ฆ็ด ใซๅคใไปฃๅ ฅใใพใใ |
| j่ก็ฎใiๅ็ฎใฎ่ฆ็ด ใธไปฃๅ ฅโ | X[j][i] = value | 2ๆฌกๅ ้ ๅXใซใใใj่ก็ฎใiๅ็ฎใซใใ่ฆ็ด ใซๅคใไปฃๅ ฅใใพใใ๏ผ0็ช็ฎใใ้ๅง๏ผ |
| j่ก็ฎใiๅ็ฎใฎ่ฆ็ด ใธไปฃๅ ฅโก | X[j, i] = value | 2ๆฌกๅ ้ ๅXใซใใใj่ก็ฎใiๅ็ฎใซใใ่ฆ็ด ใซๅคใไปฃๅ ฅใใพใใ๏ผไธใฎ็็ฅๅฝข๏ผ |
| ๆๅฎ้ ๅใฎ่ฆ็ด ใธไปฃๅ ฅ | X[j:j+h, i:i+w] = value | 2ๆฌกๅ ้ ๅXใซใใใjใใj+h่ก็ฎใiใใi+wๅ็ฎใซใใ่ฆ็ด ใซๅคใไปฃๅ ฅใใพใใ |
| ้ ๅใฎใณใใผ | y = x.copy() | ้ ๅxใใณใใผใใๆฐใใช้ ๅyใ็ๆใใพใใ |
| ๆซๅฐพใซ่ฆ็ด ่ฟฝๅ | z = numpy.append(x, y) | ้ ๅxใฎๆซๅฐพใซ้ ๅyใฎ่ฆ็ด ใ่ฟฝๅ ใใๆฐใใ้ ๅzใ็ๆใใพใใ |
| ๆฌกๅ ๆฐใฎๅคๆด | X = x.reshape(m, n) | 1ๆฌกๅ ้ ๅxใ2ๆฌกๅ ้ ๅX๏ผใตใคใบใฏmรn๏ผใซๅคๆใใพใใ |
| ใใผใฟๅใฎๅคๆด | y = x.astype(dtype) | ้ ๅxใฎใใผใฟๅใdtypeใซๅคๆใใๆฐใใช้ ๅyใ็ๆใใพใใ |
| ๆธใๆใ็ฆๆญข | x.flags.writeable = False | ้ ๅxใฎ่ฆ็ด ใๆธใๆใ็ฆๆญขใซใใพใใ |
| ้ ๅใฎ็ตๅ(็ธฆ) | Z = numpy.vstack([X, Y]) | ้ ๅX, Yใ็ธฆๆนๅใซ็ตๅใใพใใ |
| ้ ๅใฎ็ตๅ(ๆจช) | Z = numpy.hstack([X, Y]) | ้ ๅX, Yใๆจชๆนๅใซ็ตๅใใพใใ |
| ้ ๅใฎๅๅฒ(็ธฆ) | Y = numpy.vsplit(X, n) | ้ ๅXใ็ธฆๆนๅใซnๅใซๅๅฒใใพใใ |
| ้ ๅใฎๅๅฒ(ๆจช) | Y = numpy.hsplit(X, n) | ้ ๅXใๆจชๆนๅใซnๅใซๅๅฒใใพใใ |
| ้ ๅใฎๆฏ่ผ๏ผๅฎๅ จไธ่ด๏ผ | z = numpy.allclose(x, y) | ้ ๅx, yใฎ่ฆ็ด ใๅฎๅ จใซไธ่ดใใใ่ชฟในใพใใ |
| ใคใณใใใฏในใฎ็งปๅ | y = numpy.roll(x, n) | ้ ๅxใฎ่ฆ็ด ใๅทฆๅณใซnๅๅใ ใ็งปๅใใพใใ |
| ้ ๅใใชในใใซๅคๆ | list=x.tolist() | ้ ๅxใใชในใlistใซๅคๆใใพใใ |
ใใผใฟๆฝๅบ
ใใใผใฟๆฝๅบใใซ้ขใใไธปใชๆฉ่ฝใฏๆฌกใฎ้ใใงใใ
| – | ่จ่ฟฐไพ | ๆฉ่ฝใฎ่ชฌๆ |
|---|---|---|
| ๆฌกๅ ๆฐ | dim = X.ndim | ้ ๅXใฎๆฌกๅ ๆฐใๅๅพใใพใใ |
| ่ฆ็ด ๆฐโ | shape = X.shape | ้ ๅXใฎๅๆฌกๅ ใฎ่ฆ็ด ๆฐใๅๅพใใพใใ |
| ่ฆ็ด ๆฐโก | size = A.size | ้ ๅAใฎ่ฆ็ด ๆฐใๅๅพใใพใใ |
| ใใคใๆฐโ | byteX = X.nbytes | ้ ๅXใฎใใคใๆฐใๅๅพใใพใใ |
| ใใคใๆฐโก | byte = X.itemsize | ้ ๅXใฎ1่ฆ็ด ใใใใฎใใคใๆฐใๅๅพใใพใใ |
| ใใผใฟๅ | type = X.dtype | ้ ๅXใฎใใผใฟๅใๅๅพใใพใใ |
| ๅ ้ ญใฎ่ฆ็ด | a = x[0] | 1ๆฌกๅ ้ ๅxใซใใๅ ้ ญใฎ่ฆ็ด ใๅๅพใใพใใ |
| i็ช็ฎใฎ่ฆ็ด | a = x[i] | 1ๆฌกๅ ้ ๅxใซใใใi็ช็ฎใฎ่ฆ็ด ใๅๅพใใพใใ(ๅ ้ ญใฏ0็ช็ฎ) |
| ๆซๅฐพใฎ่ฆ็ด | a = x[-1] | 1ๆฌกๅ ้ ๅxใซใใใๆซๅฐพใฎ่ฆ็ด ใๅๅพใใพใใ |
| i๏ฝj-1็ช็ฎใฎ่ฆ็ด | a = x[i:j] | 1ๆฌกๅ ้ ๅxใซใใใi็ช็ฎใใj-1็ช็ฎใพใงใฎ่ฆ็ด ใๅๅพใใพใใ |
| j่ก็ฎ, iๅ็ฎใฎ่ฆ็ด โ | a = X[j][i] | 2ๆฌกๅ ้ ๅXใซใใใj่ก็ฎใiๅ็ฎใซใใ่ฆ็ด ใๅ็ งใใพใใ๏ผ0็ช็ฎใใ้ๅง๏ผ |
| j่ก็ฎ, iๅ็ฎใฎ่ฆ็ด โก | a = X[j, i] | 2ๆฌกๅ ้ ๅXใซใใใj่ก็ฎใiๅ็ฎใซใใ่ฆ็ด ใๅ็ งใใพใใ |
| ๆๅฎ้ ๅใฎ่ฆ็ด | a = X[j:j+h, i:i+w] | 2ๆฌกๅ ้ ๅXใซใใใjใใj+h่ก็ฎใiใใi+wๅ็ฎใซใใ่ฆ็ด ใๅ็ งใใพใใ |
| ่กใฎ่ฆ็ด | a = X[j, :] | 2ๆฌกๅ ้ ๅXใซใใใj่ก็ฎใซใใๅ จใฆใฎ่ฆ็ด ใๅๅพใใพใใ |
| ๅใฎ่ฆ็ด | a = X[:, i] | 2ๆฌกๅ ้ ๅXใซใใใiๅ็ฎใซใใๅ จใฆใฎ่ฆ็ด ใๅๅพใใพใใ |
| ่คๆฐใฎๆกไปถใๆบใใ่ฆ็ด | x = numpy.select(condlist, choicelist) | ่คๆฐใฎๆกไปถใๆบใใ่ฆ็ด ใๅๅพใใพใใ |
| ่กๅใฎๅฏพ่งๆๅ | a = numpy.diag(X) | 2ๆฌกๅ ้ ๅXใใๅฏพ่งๆๅใฎ่ฆ็ด ใๅๅพใใพใใ |
| ๆกไปถใๆบใใ่ฆ็ด | a = x[ numpy.where(condition) ] | ้ ๅxใใๆกไปถใๆบใใ่ฆ็ด ใๅๅพใใพใใ |
| ใฉใณใใ ๆฝๅบโ | a = numpy.random.choice(a, n, replace=True) | ้ ๅxใใnๅใฎ่ฆ็ด ใใฉใณใใ ใซๅๅพใใพใใ๏ผreplaceใTrueใชใ้่คใใ) |
| ใฉใณใใ ๆฝๅบโก | a = numpy.random.choice(x, n, p= [0.1, 0.9]) | ้ ๅxใใๅบ็พ็ขบ็pใซๅบใใฆnๅใฎ่ฆ็ด ใใฉใณใใ ใซๅๅพใใพใใ |
| ใทใฃใใใซ | x = numpy.random.shuffle(a) | ้ ๅxใฎ่ฆ็ด ใฎ้ ๅบใใทใฃใใใซใใฆใใๅๅพใใพใใ |
| ่ฆ็ด ใฎใคใณใใใฏใน | index = numpy.where(condition) | ้ ๅใใๆกไปถใๆบใใ่ฆ็ด ใฎใคใณใใใฏในใๅๅพใใพใใ |
| ๆๅฐๅค่ฆ็ด ใฎใคใณใใใฏใน | index = numpy.argmin(x) | ้ ๅxใใๆๅฐๅค่ฆ็ด ใฎใคใณใใใฏในใๅๅพใใพใใ |
| ๆๅคงๅค่ฆ็ด ใฎใคใณใใใฏใน | index = numpy.argmax(x) | ้ ๅxใใๆๅคงๅค่ฆ็ด ใฎใคใณใใใฏในใๅๅพใใพใใ |
| ้0่ฆ็ด ใฎใคใณใใใฏใน | index = numpy.nonzero(x) | ้ ๅxใใ0ไปฅๅคใฎๅคใใใค่ฆ็ด ใฎใคใณใใใฏในใๅๅพใใพใใ |
| ้0่ฆ็ด ๆฐ | n = numpy.count_nonzero(a) | ้ ๅxใใ0ไปฅๅคใฎๅคใใใค่ฆ็ด ๆฐใใซใฆใณใใใพใใ |
| ๆกไปถใๆบใใ่ฆ็ด ๆฐ | n = len(numpy.where(condition)[0]) | ๆกไปถๅผใๆบใใ่ฆ็ด ๆฐใใซใฆใณใใใพใใ |
ๆฐๅญฆ้ขๆฐ
| – | ่จ่ฟฐไพ | ๆฉ่ฝใฎ่ชฌๆ |
|---|---|---|
| ๆญฃๅผฆ้ขๆฐ | y = numpy.sin(x) | ๆญฃๅผฆ้ขๆฐsin(x)ใๆฑใใพใใ(xใฏใฉใธใขใณ) |
| ไฝๅผฆ้ขๆฐ | y = numpy.cos(x) | ไฝๅผฆ้ขๆฐcos(x)ใๆฑใใพใใ |
| ๆญฃๆฅ้ขๆฐ | y = numpy.tan(x) | ๆญฃๆฅ้ขๆฐtan(x)ใๆฑใใพใใ |
| ้ๆญฃๅผฆ้ขๆฐ | y = numpy.arcsin(x) | ้ๆญฃๅผฆ้ขๆฐarcsin(x)ใๆฑใใพใใ |
| ้ไฝๅผฆ้ขๆฐ | y = numpy.arccos(x) | ้ไฝๅผฆ้ขๆฐarccos(x)ใๆฑใใพใใ |
| ้ๆญฃๆฅ้ขๆฐ | y = numpy.arctan(x) | ้ๆญฃๆฅ้ขๆฐarctan(x)ใๆฑใใพใใ |
| ใฉใธใขใณโๅบฆ | deg = numpy.rad2deg(rad) | ใฉใธใขใณ(rad)ใๅบฆ(deg)ใซๅคๆใใใ |
| ๅบฆโใฉใธใขใณ | rad = numpy.deg2rad(rad) | ๅบฆ(deg)ใใฉใธใขใณ(rad)ใซๅคๆใใใ |
| ๅนณๆนๆ น | y = numpy.sqrt(x) | ้ ๅxใฎๅนณๆนๆ นใๆฑใใพใใ |
| ็ซๆนๆ น | y = numpy.cbrt(x) | ้ ๅxใฎ็ซๆนๆ น๏ผไธไนๆ น๏ผใๆฑใใพใใ |
| ไบไน | y = numpy.square(x) | ้ ๅxใฎไบไนใๆฑใใพใใ |
| ็ตถๅฏพๅค | numpy.absolute(x) | ้ ๅxใฎ็ตถๅฏพๅคใๆฑใใพใใ |
| ็ตถๅฏพๅค๏ผ็็ฅๅฝข๏ผ | numpy.abs(x) | ้ ๅxใฎ็ตถๅฏพๅคใๆฑใใพใใ |
| ็ฌฆๅท้ขๆฐ | numpy.sign(x) | ้ ๅxใฎ็ฌฆๅทใๆฑใใพใใ |
| ๆๆฐ้ขๆฐ | y=numpy.exp(x) | ๆๆฐ้ขๆฐ |
| ๅฏพๆฐ้ขๆฐ๏ผๅบe๏ผ | y=numpy.log(x) | ๅบใeใฎๅฏพๆฐ้ขๆฐ |
| ๅฏพๆฐ้ขๆฐ(ๅบ10) | y=numpy.log10(x) | ๅบใ10ใฎๅฏพๆฐ้ขๆฐ |
| ๅฏพๆฐ้ขๆฐ(ๅบ2) | y=numpy.log2(x) | ๅบใ2ใฎๅฏพๆฐ้ขๆฐ |
| ๅๅจ็ | pi = numpy.pi | ๅๅจ็ฯใๅผใณๅบใใพใใ |
| ใใคใใขๆฐ | e = numpy.e | ใใคใใขๆฐeใๅผใณๅบใใพใใ |
| ่ค็ด ๆฐใฎๅๆๅ | x = np.array([1+1j, 1+2j, 1+3j]) | ่ค็ด ๆฐใ่ฆ็ด ใซใใค้ ๅxใ็ๆใใพใใ |
| ๅฎ้จ | numpy.real(x) | ้ ๅxใใๅฎ้จใฎใฟใๅใๅบใใพใใ |
| ่้จ | numpy.imag(x) | ้ ๅxใใ่้จใๅใๅบใใพใใ |
| ่ค็ด ๅ ฑๅฝน | numpy.conj(x) | ้ ๅxใใ่ค็ด ๅ ฑๅฝนใๆฑใใพใใ |
| ่กๆนๅใฎๅ | y = numpy.sum(X, axis=1) | 2ๆฌกๅ ้ ๅXใซใใใ่ฆ็ด ใฎ่กๆนๅใฎๅใๆฑใใพใใ |
| ๅๆนๅใฎๅ | y = numpy.sum(X, axis=0) | 2ๆฌกๅ ้ ๅXใซใใใ่ฆ็ด ใฎๅๆนๅใฎๅใๆฑใใพใใ |
| ่กๆนๅใฎๅทฎ | y = numpy.diff(X) | 2ๆฌกๅ ้ ๅXใซใใใ่ฆ็ด ใฎ่กๆนๅใฎๅทฎๅใๆฑใใพใใ |
| ๅๆนๅใฎๅทฎ | y = numpy.diff(X, axis=0) | 2ๆฌกๅ ้ ๅXใซใใใ่ฆ็ด ใฎๅๆนๅใฎๅทฎๅใๆฑใใพใใ |
| ่กๆนๅใฎ็ฉ | y = numpy.prod(X, axis=1) | 2ๆฌกๅ ้ ๅXใซใใใ่ฆ็ด ใฎ่กๆนๅใฎ็ฉใๆฑใใพใใ |
| ๅๆนๅใฎ็ฉ | y = numpy.prod(X, axis=0) | 2ๆฌกๅ ้ ๅXใซใใใ่ฆ็ด ใฎๅๆนๅใฎ็ฉใๆฑใใพใใ |
็ตฑ่จ้
| – | ่จ่ฟฐไพ | ๆฉ่ฝใฎ่ชฌๆ |
|---|---|---|
| ๅ่จ | total = numpy.sum(x) | ้ ๅxใฎ่ฆ็ด ใฎ็ทๅใๆฑใใพใใ |
| ๅนณๅ | ave = numpy.average(x) | ้ ๅxใฎ่ฆ็ด ใฎๅนณๅใๆฑใใพใใ |
| ๅๆฃ | var = numpy.var(x) | ้ ๅxใฎ่ฆ็ด ใฎๅๆฃใๆฑใใพใใ |
| ๆจๆบๅๅทฎ | std = numpy.std(x) | ้ ๅxใฎ่ฆ็ด ใฎๆจๆบๅๅทฎใๆฑใใพใใ |
| ไธๅๅๆฃ | dvar = numpy.var(x, ddof=1) | ้ ๅxใฎ่ฆ็ด ใฎไธๅๅๆฃใๆฑใใพใใ |
| ไธๅๆจๆบๅๅทฎ | dstd = numpy.std(x, ddof=1) | ้ ๅxใฎ่ฆ็ด ใฎไธๅๆจๆบๅๅทฎใๆฑใใพใใ |
| ๅๅทฎๅค | y = numpy.round_(50+10*(x-numpy.average(x))/numpy.std(x)) | ้ ๅxใฎ่ฆ็ด ใฎๅๅทฎๅคใๆฑใใพใใ |
| ๆๅคงๅค | max = numpy.amax(x) | ้ ๅxใฎ่ฆ็ด ใฎๆๅคงๅคใๆฑใใพใใ |
| ๆๅฐๅค | min = numpy.amin(x) | ้ ๅxใฎ่ฆ็ด ใฎๆๅฐๅคใๆฑใใพใใ |
| ไธญๅคฎๅค | median = numpy.median(x) | ้ ๅxใฎ่ฆ็ด ใฎไธญๅคฎๅคใๆฑใใพใใ |
| ็ฎ่กๅนณๅ | mean = numpy.mean(x) | ้ ๅxใฎ่ฆ็ด ใฎ็ฎ่กๅนณๅใๆฑใใพใใ |
| ๅทฎๅ | dx = numpy.diff(x) | ้ ๅxใฎ่ฆ็ด ใฎๅทฎๅใๆฑใใพใใ |
| ๅพ้ | lx = numpy.gradient(x) | ้ ๅxใฎ่ฆ็ด ใฎๅพ้ ๏ผๅพใ๏ผใๆฑใใพใใ |
| ็ธ้ขไฟๆฐ | alpha = numpy.corrcoef(x, y)[0, 1] | ้ ๅx, yใฎ็ธ้ขไฟๆฐใๆฑใใพใใ |
| ใในใใฐใฉใ | hist = numpy.histogram(x) | ้ ๅxใฎใในใใฐใฉใ ใๆฑใใพใใ |
ๅๅธฐๅๆ
| – | ่จ่ฟฐไพ | ๆฉ่ฝใฎ่ชฌๆ |
|---|---|---|
| ๅๅๅธฐๅๆ | A = numpy.array([x,numpy.ones(len(x))]) a, b = numpy.linalg.lstsq(A.T, y)[0] |
้ ๅx๏ผ่ชฌๆๅคๆฐ๏ผใจ้ ๅy๏ผ็ฎ็ๅคๆฐ๏ผใใๆๅฐไบไนๆณใซใใๅๅธฐ็ด็ทใฎๅพใaใจๅ็bใๆฑใใพใใ |
| ้ๅๅธฐๅๆ | e = numpy.array([x1, x2]) e = numpy.vstack([numpy.ones(e.shape[1]), e]) b, a1, a2 = numpy.linalg.lstsq(e.T, o)[0] |
้ ๅx1, x2๏ผ่ชฌๆๅคๆฐ๏ผใจ้ ๅy๏ผ็ฎ็ๅคๆฐ๏ผใใๅๅธฐๆฒ็ทใฎๅพใa1, a2ใจๅ็bใๆฑใใพใใ |
| ็ด็ท่ฟไผผ | a, b = numpy.polyfit(x, y, 1) | ้ ๅx๏ผ่ชฌๆๅคๆฐ๏ผใจ้ ๅy๏ผ็ฎ็ๅคๆฐ๏ผใใ่ฟไผผ็ด็ทใฎๅพใaใจๅ็bใๆฑใใพใใ |
| ๆฒ็ท่ฟไผผ | a1, a2, b = numpy.polyfit(x, y, 2) | ้ ๅx๏ผ่ชฌๆๅคๆฐ๏ผใจ้ ๅy๏ผ็ฎ็ๅคๆฐ๏ผใใ2ๆฌกใฎ่ฟไผผๆฒ็ทใฎไฟๆฐa1, a2ใจๅ็bใๆฑใใพใใ |
ใใฏใใซ่จ็ฎ
| – | ่จ่ฟฐไพ | ๆฉ่ฝใฎ่ชฌๆ |
|---|---|---|
| ๅ ็ฎ | z = x + y | 2ใคใฎใใฏใใซx, yใฎๅ ็ฎใๆฑใใพใใ |
| ๆธ็ฎ | z = x – y | 2ใคใฎใใฏใใซx, yใฎๆธ็ฎใๆฑใใพใใ |
| ๅ ็ฉ | z = x.dot(y) ใใใใฏ z = numpy.dot(x, y) | 2ใคใฎใใฏใใซx, yใฎๅ ็ฉใๆฑใใพใใๅฐใmatrixๅใฎๅ ดๅใฏ็ฎ่กๆผ็ฎๅญ*ใ ใใงๅ ็ฉใ่จ็ฎใงใใพใใ |
| ๅค็ฉ | z = numpy.cross(x, y) | 2ใคใฎใใฏใใซx, yใฎๅค็ฉใๆฑใใพใใ |
| ใใซใ | norm = numpy.linalg.norm(x) | ใใฏใใซxใฎใใซใ ใๆฑใใพใใ |
| ๆญฃ่ฆๅ | e = x / numpy.linalg.norm(x) | ใใฏใใซxใฎๅไฝใใฏใใซeใๆฑใใพใใ๏ผๆญฃ่ฆๅ๏ผ |
่กๅ่จ็ฎ
| – | ่จ่ฟฐไพ | ๆฉ่ฝใฎ่ชฌๆ |
|---|---|---|
| ๅ ๆธ็ฎ | Z = X + Y | 2ใคใฎ่กๅX, Yใฎๅ ็ฎใๆฑใใพใใ |
| ๅ ็ฉ | Z = X.dot(Y) ใใใใฏ Z=numpy.dot(X, Y) | 2ใคใฎ่กๅX, Yใฎๅ ็ฉใๆฑใใพใใๅฐใmatrixๅใฎๅ ดๅใฏ็ฎ่กๆผ็ฎๅญ*ใ ใใงๅ ็ฉใ่จ็ฎใงใใพใใ |
| ๅค็ฉ | Z = numpy.cross(X, Y) | 2ใคใฎ่กๅX, Yใฎๅค็ฉใๆฑใใพใใ |
| ้ๆฐ(ใฉใณใฏ) | rank = numpy.linalg.matrix_rank(X) | ่กๅXใฎ้ๆฐ(ใฉใณใฏ)ใๆฑใใพใใ |
| ่กๅๅผ | det = numpy.linalg.det(X) | ่กๅXใใ่กๅๅผdetใๆฑใใพใใ |
| ่ปข็ฝฎ่กๅ | Xt = X.T | ่กๅXใฎ่ปข็ฝฎ่กๅXtใๆฑใใพใใ |
| ๅบๆๅคใปๅบๆใใฏใใซ | lam, vec = numpy.linalg.eig(X) | ่กๅXใฎๅบๆๅคlamใจๅบๆใใฏใใซvecใๆฑใใพใใ |
| ้่กๅ | invX = numpy.linalg.inv(X) | ่กๅXใฎ้่กๅinvXใๆฑใใพใใ |
| ๆฌไผผ้่กๅ | pinvX = numpy.linalg.pinv(X) | ่กๅXใฎ็ไผผ้่กๅpinvXใๆฑใใพใใ |
| ็น็ฐๅคๅ่งฃ(SVD) | U, S, V = numpy.linalg.svd(X) | ่กๅXใ็ดไบค่กๅU, Vใจ่กๅSใซๅ่งฃใใพใใ |
| QRๅ่งฃ | Q, R = numpy.linalg.qr(X) | ่กๅXใ็ดไบค่กๅQใจไธไธ่ง่กๅRใซๅ่งฃใใพใใ |
| ใณใฌในใญใผๅ่งฃ | L = numpy.linalg.cholesky(X) | ๆญฃๅฎๅคๅฏพ็งฐ่กๅXใๅ่งฃใใไธไธ่ง่กๅLใๆฑใใพใใ |
| ๅ่ปข่กๅ | – | ่กๅXใฎๅ่ปข่กๅใๆฑใใพใใ |
ไฟกๅทๅฆ็
| – | ่จ่ฟฐไพ | ๆฉ่ฝใฎ่ชฌๆ |
|---|---|---|
| 1ๆฌกๅ FFT | f = numpy.fft.fft(x) | 1ๆฌกๅ ใฎ้ซ้ใใผใชใจๅคๆใซใใใ1ๆฌกๅ ้ ๅxใฎใใผใฟใๆ้้ ๅใใๅจๆณขๆฐ้ ๅใซๅคๆใใพใใ |
| 2ๆฌกๅ FFT | F = numpy.fft.fft(X) | 2ๆฌกๅ ใฎ้ซ้ใใผใชใจๅคๆใซใใใ2ๆฌกๅ ้ ๅXใฎใใผใฟใๆ้้ ๅใใๅจๆณขๆฐ้ ๅใซๅคๆใใพใใ |
| ้ถๅจๆณขๆฐๆๅใฎ็งปๅ | Fs = numpy.fft.fftshift(F) | 2ๆฌกๅ ้ ๅFใฎ้ถๅจๆณขๆฐๆๅใๅทฆไธใใไธญๅฟใซ็งปๅใใใๆฐใใ้ ๅFsใ็ๆใใพใใ |
| 1ๆฌกๅ IFFT | x = numpy.fft.ifft(f) | 1ๆฌกๅ ใฎ้ซ้้ใใผใชใจๅคๆใซใใใ้ ๅfใฎใใผใฟใๅจๆณขๆฐ้ ๅใใๆ้้ ๅใซๅคๆใใพใใ |
| 2ๆฌกๅ ้FFT | X = numpy.fft.ifft(F) | 2ๆฌกๅ ใฎ้ซ้้ใใผใชใจๅคๆใซใใใ้ ๅfใฎใใผใฟใๅจๆณขๆฐ้ ๅใใๆ้้ ๅใซๅคๆใใพใใ |
| ๅจๆณขๆฐ่ปธใฎ็ๆ | freq = numpy.fft.fftfreq(N, d) | ใตใณใใซๆฐNใใตใณใใชใณใฐๅจๆใฎๅจๆณขๆฐ่ปธใฎๅคใๆฑใใพใใ |
| ในใใฏใใซ่งฃๆ | – | – |
| ใใคใบ้คๅป | – | – |
ใใกใคใซๅฆ็
| – | ่จ่ฟฐไพ | ๆฉ่ฝใฎ่ชฌๆ |
|---|---|---|
| ่ชญ่พผโ | X = numpy.loadtxt(filename, delimiter, skiprows, dtype) | ใใญในใๅฝขๅผใฎใใกใคใซใ่ชญใฟ่พผใใงใใใผใฟใNumPyๅ้ ๅXใซๆ ผ็ดใใพใใ๏ผfilename:ใใกใคใซๅ, delimiter:ๅบๅใๆๅญ, skiprows:่ชญใฟ้ฃใฐใใใใ่กใฎ่กๆฐ dtype:ใใผใฟๅ๏ผ |
| ่ชญ่พผโก | X = numpy.genfromtxt(filename, delimiter, skip_header, dtype) | ใใญในใๅฝขๅผใฎใใกใคใซใ่ชญใฟ่พผใใงใใใผใฟใNumPyๅ้ ๅXใซๆ ผ็ดใใพใใ๏ผfilename:ใใกใคใซๅ, delimiter:ๅบๅใๆๅญ, skiprows:่ชญใฟ้ฃใฐใใใใ่กใฎ่กๆฐ dtype:ใใผใฟๅ๏ผ |
| ๆธ่พผโ | numpy.savetxt(filename, x, delimiter) | NumPyๅ้ ๅxใฎใใผใฟใใใญในใๅฝขๅผใงใใกใคใซใซๆธใ่พผใฟใพใใ๏ผfilename:ใใกใคใซๅ, delimiter:ๅบๅใๆๅญ๏ผ |
| ๆธ่พผโก | numpy.savez(filename, a, b, …) | ่คๆฐใฎ้ ๅa, b, …ใฎใใผใฟใใใคใใชๅฝขๅผ๏ผ้ๅง็ธฎ๏ผใงๆธใ่พผใฟใพใใ |
| ๆธ่พผโข | numpy.savez_compressed(filename, a, b, …) | ่คๆฐใฎ้ ๅa, b, …ใฎใใผใฟใใใคใใชๅฝขๅผ๏ผๅง็ธฎ๏ผใงๆธใ่พผใฟใพใใ |
ใใใใ่จไบ
Pythonๅ
ฅ้ ใตใณใใซ้
NumPyๅ
ฅ้ ใตใณใใซ้
ใNumPyๅ
ฅ้ใ้
ๅใฎๅบ็ค็ใชๆฑใๆน๏ผndarray๏ผ

ใณใกใณใ