Pythonใจๆฉๆขฐๅญฆ็ฟใฉใคใใฉใชใscikit-learnใใซใใใใฅใผใฉใซใใใใฏใผใฏ๏ผๅคๅฑคใใผใปใใใญใณใปMLP๏ผใฎไฝฟใๆนใซใคใใฆใพใจใใพใใใ
ใใฏใใใซใใใฅใผใฉใซใใใใฏใผใฏใจใฏ
ใใฅใผใฉใซใใใใฏใผใฏ (Neural network)ใจใฏใไบบใฎ่ณๅ
ใซใใ็ฅ็ตๅ่ทฏใๅ่ใซใใๅญฆ็ฟใขใใซใงใใ
ๅคๅฑคใใผใปใใใญใณ๏ผMLP๏ผใจใฏใใใผใปใใใญใณใ่คๆฐ็นใใงๅคๅฑคๆง้ ใซใใใใฅใผใฉใซใใใใฏใผใฏใงใใ


ๆฉๆขฐๅญฆ็ฟใฉใคใใฉใชใScikit-learnใใงใฏใใใผใธใงใณ0.18.0ใใใใฅใผใฉใซใใใใฏใผใฏ๏ผNN๏ผใๅฉ็จใงใใใใใซใชใใพใใใ
ไปๅใฏใใใใ็จใใฆCSVใใกใคใซใฎใใผใฟใ่ชญใฟ่พผใใงๅญฆ็ฟใใใฆใฟใพใใ
ๆธๅผ
scikit-learnใงใฏใsklearn.neural_network.MLPClassifierใฏใฉในใไฝฟใใใจใงใใฅใผใฉใซใใใใฏใผใฏ๏ผNN๏ผใๅฎ่ฃ
ใงใใพใใ
ใใฎใฏใฉในใฏใใใฅใผใฉใซใใใใฏใผใฏใงใใๅฉ็จใใใฆใใๅคๅฑคใใผใปใใใญใณ๏ผMLP๏ผๆนๅผใงใใ
sklearn.neural_network.MLPClassifier(hidden_layer_sizes=(100, ), activation='relu', solver='adam', alpha=0.0001, batch_size='auto', learning_rate='constant', learning_rate_init=0.001, power_t=0.5, max_iter=200, shuffle=True, random_state=None, tol=0.0001, verbose=False, warm_start=False, momentum=0.9, nesterovs_momentum=True, early_stopping=False, validation_fraction=0.1, beta_1=0.9, beta_2=0.999, epsilon=1e-08)
โปๅใใฉใกใผใฟใซ่จญๅฎใใใฆใๅค(=ใฎๅพ)ใฏใใใฉใซใๅค
ใใฉใกใผใฟ๏ผๅผๆฐ๏ผ | ๅ ๅฎน |
---|---|
hidden_layer_sizes=(100, ) | ้ ใๅฑคใฎใใผใๆฐ(ๅคๅฑคๅๅฏ่ฝ) |
activation=’relu’ | ๆดปๆงๅ้ขๆฐ(identify, logistic, tanh, relu) |
solver=’adam’ | ๆ้ฉๅๆๆณ(lbfgs, sgd, adam) |
alpha | L2ใใใซใใฃ๏ผๆญฃๅๅใฎ้ ๏ผ |
batch_size=’auto’ | ๆ้ฉๅใฎใใใใตใคใบ(sgdใadam็จ) |
learning_rate | ้ใฟๆดๆฐใฎใใใฎๅญฆ็ฟ็ในใฑใธใฅใผใซ๏ผ’ๅฎๆฐ’ใ ‘invscaling’ใ ‘adaptive’๏ผ |
max_iter=200 | ๅๅพฉใฎๆๅคงๅๆฐ |
shuffle | ๅๅพฉใใๅบฆใซใตใณใใซใใทใฃใใใซใใใ๏ผsolverใ’sgd’ใ’adam’ใฎๆใซไฝฟ็จ๏ผ |
random_state | ไนฑๆฐ็ๆใฎ็ถๆ or ใทใผใ๏ผintใRandomState๏ผ |
tol | ๆ้ฉๅใฎ่จฑๅฎน่ชคๅทฎ |
power_t | ในใฑใผใชใณใฐๅญฆ็ฟ็ใฎๆๆฐ |
verbose | ้ฒๆใกใใปใผใธใๆจๆบๅบๅใใใใฉใใ |
warm_start | ไปฅๅใฎๅผใณๅบใใฎ่งฃใๅๅฉ็จใใฆๅๆๅใใใใฉใใ |
momentum | ๅพ้ ้ไธๆดๆฐใฎใขใกใณใฟใ |
nesterovs_momentum | ่จ็ทดใใผใฟใฎ10๏ผ ใๅฆฅๅฝๆงๆคๆปใจใใฆ่ชๅ่จญๅฎใใใ2ใคใฎ้ฃ็ถใใใจใใใฏใงๅฐใชใใจใๅฆฅๅฝๆงในใณใขใๆนๅใใฆใใชใๅ ดๅใฏ่จ็ทด็ตไบ๏ผsolver = ‘sgd’ใพใใฏ ‘adam’ใงๆๅน๏ผ |
early_stopping | ๆค่จผในใณใขใๆนๅใใใฆใใชใใจใ่จ็ทดไธญๆญขใฎใใใซๆฉๆๅๆญขใไฝฟ็จใใใใฉใใ |
validation_fractionv | ๆฉๆๅๆญขใฎใใใฎๅฆฅๅฝๆง็ขบ่ชใจใใฆ่จญๅฎใใใ่จ็ทดใใผใฟใฎๅฒๅ |
beta_1 | adamใฎ็ฌฌ1ใขใผใกใณใใใฏใใซใฎๆจๅฎๅคใซๅฏพใใๆๆฐ้ขๆฐ็ๆธ่กฐ็ |
beta_2 | adamใฎ็ฌฌ2ใขใผใกใณใใใฏใใซใฎๆจๅฎๅคใซๅฏพใใๆๆฐ้ขๆฐ็ๆธ่กฐ็ |
epsilon | adamใฎๆฐๅคๅฎๅฎๆงใฎๅค(solver = ‘adam’ใงไฝฟ็จ) |
ใๅ่ๆ็ฎใ http://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html#sklearn.neural_network.MLPClassifier
ใฝใผในใณใผใ
ใตใณใใซใใญใฐใฉใ ใฎใฝใผในใณใผใใงใใ
่กจ็คบใใใชใๅ ดๅใฏใใhttps://github.com/nishizumi-lab/sample/blob/master/python/scikit/mlp/ex2.pyใใใ่ฆงใใ ใใใ
ๅญฆ็ฟ็จใใผใฟ
ใในใ็จใใผใฟ
MLPใฎๆฑบๅฎๅข็ใๅฏ่ฆๅ
ๅๅ่จไบใงใฏใPythonใจๆฉๆขฐๅญฆ็ฟใฉใคใใฉใชใscikit-learnใใงใใฅใผใฉใซใใใใฏใผใฏ๏ผๅคๅฑคใใผใปใใใญใณใปMLP๏ผใฎๅญฆ็ฟใขใใซใไฝๆใใพใใใ

ไปๅใฏใScikit-learnใงไฝๆใใๅญฆ็ฟๆธใฟใขใใซใใฐใฉใใงๅฏ่ฆๅ๏ผ็ๆใใใๆฑบๅฎๅข็ใๆ็ป๏ผใใพใใ
ใใๆนใฏ็ฐกๅใงใ่ชฌๆๅคๆฐใซๅใใใ็ดฐใใๅ
ฅๅใใผใฟใไฝใใๅญฆ็ฟใใใขใใซใงๅ้กใ่กใๅกใใคใถใใฆใใใพใใ
ใใฎ้ใๅใฏใฉในใ่ฒๅใใใฆใใญใใใใใใจใงใๆฑบๅฎๅข็๏ผๅ้กใฎๅข็็ท๏ผใๆตฎใใณไธใใใพใใ
็ดฐใใใใผใฟใไฝใ้ใฏใnumpyใฎmeshgridใไฝฟใใจไพฟๅฉใงใใ
ใฝใผในใณใผใ
ใตใณใใซใใญใฐใฉใ ใฎใฝใผในใณใผใใงใใ
ๅญฆ็ฟ็จใใผใฟ
ใในใ็จใใผใฟ




ใณใกใณใ